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Abstract. Starting from the spectral representation of the two-point functions in the axial 
gauge, we ‘solve’ the gauge identities so as to express the higher-point Green functions 
linearly in terms of the two-point spectral function. The four-point functions are an 
important input for investigations of scalar electrodynamics and vector chromodynamics 
based on the gauge technique. 

1. Introduction 

There has been considerable interest in application of the gauge technique (Salam 
1963, Delbourgo 1979a) over the last year or so, with the purpose of probing the 
ultraviolet and infrared structure of chromodynamics (Ball and Zachariasen 1978, 
Delbourgo 1979b, Bargadda 1979, Anishetty et al 1979). Because the technique is 
founded on a determination of the longitudinal charged line amplitudes in terms of the 
charged propagator, the use of the axial gauge is strongly indicated in such theories- 
other gauge choices lead to difficult identities involving fictitious particle amplitudes. 
Therefore, in chromodynamics, a significant part of the input is the solution of the gauge 
identities in the axial gauge (up to the usual unknown transverse pieces). In this paper 
we want to describe the general solution of this problem without resorting to any 
approximation. We shall determine the fully connected Green functions in terms of the 
spectral function of the charged line propagator in a form which is ready-made for 
insertion into the Dyson-Schwinger equation. Since the relation we obtain is linear, as 
is the equation for the Green function, the gauge technique is guaranteed to provide a 
linear equation for the spectral function even with the inclusion of intermediate 
three-gluon intermediate states. This approach differs markedly from that of Anishetty 
et a1 (1979) who solve the identities for one-particle irreducible amplitudes, do not 
make use of spectral representation and obtain complicated nonlinear equations for 
their propagator. 

In § 2 we look at the simpler problem of scalar electrodynamics in the axial gauge; 
this bears some similarity to chromodynamics, in that the two-photon two-meson 
amplitude enters into the coupled field equations in a fundamental way. The full 
solution of gauge identities is spelled out in detail. We then repeat the exercise for 
spinor electrodynamics in § 3, although the fom-point amplitude is not so basically 
important. With the experience gained from electrodynamics, we are able to tackle 
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754 R Delbourgo 

chromodynamics in § 4 and obtain the complete solution for the four-gluon Green 
function. The influence of this amplitude on the gauge technique investigation of the 
gluon propagator will be described in a separate publication. 

2. Scalar electrodynamics 

We begin with the spectral representation (Johnson 1960) of the charged meson 
propagator? 

for the axial gauge fixed through n . A = 0. It is convenient to take n as a unit vector 
along the temporal direction to simplify some of the writing below, although the final 
results do not, of course, depend on this choice-it is anyhow rather trivial to reinstate 
the n-dependence at the end. We have already described the solution of the identity 

in an earlier paper (Delbourgo 1978). It is simply 

Observe that the It, component here is irrelevant for the physics, since it vanishes upon 
contraction with an external polarisation vector or with the photon propagator 
D’””(p’ - p ) .  Note also the averaging over incoming and outgoing spectral functions 
in (3). 

Our aim now is to solve the higher-point identities$ (remember p ‘  + k’ = p + k )  

etc, using the form (3) so as to find the connected (but not one-particle irreducible) 
amplitudes A r A  in terms of appropriate integrals over p. (Figure 1 gives a diagrammatic 
representation of the identities (4).) To understand the steps, it is very helpful to be 
conversant with the kinematical solution provided by lowest-order perturbation theory. 

+ The bare propagator is retrieved by setting p (  W2,  p .  n )  = S( W 2 -  m 2 ) .  Because of charge conjugation 
symmetry A ( p )  = A ( - p ) ,  so p is even in p . n. First-order perturbation theory expressions for p can be found in 
Delbourgo and Phocas-Cosmetatos (1979), verifying the evenness. 
$ I n  (4), as in (2), there remain unknown transverse parts orthogonal to the momenta which are not 
determined by the gauge identities but only by the dynamics. For instance, in (2) the transverse vertex 

A ( p ’ ) r z ( p ‘ ,  p ) A ( p )  [ ( P ’ - P ) ~ T , ,  - ( P ’ - P ) , ( P ’ - P ) ” ~ ( P ’ + P ) ’ ~ [ P ~ ,  P ” ,  ( P  - P ‘ ) ’ ]  

makes no contribution, and can only be evaluated by going to second gauge approximation in (4). 
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Figure 1. Gauge identities in electrodynamics. The solid line stands for the charged 
particle, meson or fermion. 

For example, the kinematic identity 

1 
X- 

p 2 -  w2 
represents the satisfaction of ( 4 a )  to order e’. Upon substitution of (3), the right-hand 
side of ( 4 a )  is basically of the form ( 5 )  (a linear superposition thereof), except for the 
complication of the energy dependence within the spectral function p. The latter 
difficulty can be overcome by taking sums and differences over p, and making factorisa- 
tions such as 

The justification for this choice is that after factorisation there remains no singularity in 
the Green function A r A  as k’ . n + 0. 

Having outlined the essential steps of the decomposition, let us quote the entire 
solution of (4) obtained by these manipulations: 

A ( P ’ F W & ( P ‘ k ’ ;  P, k ) A ( P )  

= a I d W%( W 2 ,  pb) + P (  W2, pb + kb) + p (  W2,  PO - kb) + P (  W2, PO)] 



756 R Delbourgo 

1 + l +  1 2 + - - )  1 
x ( p ’ 2 -  W 2  ( p + k ) 2 -  W 2  ( p - k ’ ) 2 -  W p 2 -  W 2  

The symmetry of the function under the interchange p * - p ’  and k ,  p * - k ‘ ,  Y, as 
required by Bose statistics, is easily verified. 

It is worth reiterating that the full expression (6) is not needed in practice: the 
complete Green function, including photon propagators D, simplifies to 

A ( p ’ ) D “ ” ’ ( k ’ ) r , , , , ( p ’ ,  k’; p ,  k ) D @ ” ” ( k ) A ( p )  

= a  J d W2[p(W2,  p ’  . n)+p(W2,  ( p ’ +  k ’ )  . n)+p(W2,  ( p  - k’)  . n)+p(W2,  p .  n ) ]  

and this is simply a weighted integral over mass W of the classical amplitude for a 
charged scalar meson possessing that mass; the weighting includes an average over 
incoming, outgoing and intermediate charged line spectral functions. This structure is 
very important, and the results to be derived in spinor electrodynamics will turn out to 
be very similar. 

Similarly, when amplitudes with additional photons are considered, the gauge 
identities will be satisfied by averaging the classical amplitudes over spectral functions 
associated with the external and all the internal (Born term) lines for every possible 
channel. 

3. Spinor electrodynamics 

We recall that in the axial gauge the spinor propagator has the general structure 

S ( p )  = A b 2 ,  p .  n )  +Y. p B ( p 2 ,  p .  n ) +  Y. n p .  nC(p2, P n )  

where A, B and C are scalar functions, even with respect to the argument p .  n. 
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Correspondingly, we may write a Lehmann spectral form 

a(W2,  p . n )  + y . pb(w2, p . n )  + y . n p . n c ( w 2 ,  p . n ) d W z  
p 2 -  W2+i0 S ( P )  = [ 

or, better still, 
P(W, P. n )  

S ( p ) = ( l m + l m )  -m m d W  y . p - W + iOc( W )  
where 

is a matrix function of y . n and the pi are even in p . n. In particular, because p3 is a 
function of W 2  by C and P conservation, p(W, p . n )  effectively commutes with y . p in 
the denominator, so the order of numerator and denominator in (8), which might 
otherwise have concerned us, is irrelevant. The pi have been calculated in first-order 
perturbation theory (Delbourgo and Phocas-Cosmetatos 1979). 

The gauge identities are identical with (2) and (4) except, of course, that S replaces 
A. The analogue of (5) is 

1 1 1 1 
y . ( p ’ + k ’ ) -  W Y ’ y . p - W - y . p ’ - W Y , ’ . ( p - k ’ ) -  W 

1 
Y - P - W  

X 

and we already possess (Delbourgo 1978) the solution of the vertex identity, 

(9) 

Therefore, after tracing out the parallel argument to the scalar case, one finishes up with 
the four-point answer, 

S ( p ’ ) r V w ( p ’ ,  k’ ;  P, k ) S ( p )  

= - a [ d W [ p  ( W, p ’ . n ) + p ( W, ( p ’ + k ’) . n ) 

+P(W, ( P - k ’ ) .  n )+P(W,P* n) l  
1 1 1 1 

X 
y . p ’ - W ( Y ’ y . ( p + k ) - W  y, + y, y . ( p ’  - k )  - W 4 y . p - W 

(11) 
up to n,, n ,  terms which are very similar in form to (6) but disappear in all physical 
circumstances. Again one finds the classical Born graphs weighted by the spectral 
function averaged over all charged channels. 
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4. Chromodynamics 

We are now fully prepared to attack the chromodynamic gauge identities. For the 
vector meson Green functions (figure 2 gives the pictorial description and notation) 
these read 

p A A w w ’ ( q ) r $ y , ( p ,  q, r )A”’”(r )  = (A*”(r)  -A””(q) ) fabc  (12) 

k K A A A ’ ( p ) A w ” ‘ ( q ) A ” ” ’ ( r ) r ~ ~ ~ ~ , ” , ( ~ ,  p ,  q, r )  

=fabeAAA’(q  + r ) A F ” ’ ( q ) A u ” ‘ ( r ) r ~ ~ , ” , ( - q  - r, q, r )  

+ f a c e A F F ’ ( r  +p)A””’(r)AAA’(p)r~d&,A,(-r - p ,  r, p )  

+ f a d e A V ” ’ ( p  + q ) A A A ’ ( p ) A w F ’ ( q ) r ~ ~ ~ , F , ( - p  - q, p ,  4) 

+ 
Figure 2. Gauge identities for connected Green functions in chromodynamics. 

after factorising out a Kronecker delta in internal indices as in (12) and (13). 
Although we are primarily interested in the connected Green functions, it is worth 

noting that the identities are very similar for the one-particle irreducible amplitudes, 
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and involve the two-point function A-’”‘, the three-point function FACL,,, the four-point 
function CKAcLy, etc (see figure 3). Thus 

(17) A abc P r A d p ,  q, r )  = f ” ” [ A - ’ ( q )  - A - ’ ( ~ ) ~ M N  

Figure 3. Decomposition of the amputated Green function into one-particle irreducible 
terms. 

where M, N stand either for the vector indices p, Y or the auxiliary fields coupling to 
n . A. Likewise, 

k“C%$(k, p ,  q, r )  

=faber:$(-q--r,q, r ) + f a c e r $ ( - r - p ,  r , p ) + f “ d e r ~ ~ W ( - p - 4 , p ,  q )  (18) 

and so on. For those readers unacquainted with the detailed checks of these identities, 
it is a useful exercise to go through them in perturbation theory as a preliminary for 
comprehending the fully dressed amplitude relations. In these checks, note the 
lowest-order expression r = A and 

abcd abe cde ace dbe CKAFU =f f (VKUVAW - 7 ~ & V A u ) + f  f (VKAVWU -VKYVCLA) 

(19) ade bce +f f (VKFVYA - ~ K A ~ u c L ) .  

So much for the identities themselves. Next we write down the general spectral 
expansion 

a, p even in p . n, where the kinematic factor d has been defined in (16) and 

BcLU(P) = ( V ” U  - n”nu/n2). (16’) 

The bare propagator corresponds to setting a + 6( W2),  /3 + 0. We also know (Del- 
bourgo 1978) the solution of the identity (12); namely, after contraction with A ( p ) ,  

A A A ’ ( p ) A ” ” ’ ( 4 ) A u U ’ ( r ) r ~ ~ ~ , ” , ( p ,  q, r )  

= f a b c  [ d W 2  ;[a( W2,  p . n )  + a (  W 2 ,  q .  n )  + a (  W 2 ,  r .  n ) ]  
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We now have to insert (21) into (13) and determine the solution rabcd up to transverse 
corrections. Having gone through electrodynamics, the strategy should be fairly clear: 
one observes that, aside from spectral averaging, the expression (21) is the sum of two 
terms, the first corresponding to a massive Yang-Mills particle and the second cor- 
responding to a field with propagator S " " / ( p 2 -  W 2 )  also undergoing a Yang-Mills 
interaction. One can therefore look for the solution of the identity in lowest order for 
such a pair of model thepies,  and then simply sum over W z  with the appropriate 
spectral function. 

In the first model it is a fact (Delbourgo 1978) that for 

+ perms 

+perms. 

Since 

r can be factorised$ in this model as follows: 

(23) 
whereupon multiplication byDKK'(k)  eliminates the n, piece. The only thing that needs 
correcting is the spectral averaging and the lack of full Bose symmetry. This can be 

t In the following we have adopted the shorthand A ( ,  q, r )  to mean A(-q - r, q, r )  and a(, po)  to mean 

$ We have chosen to factorise the last term of (23) in the form given, n,W2{ } / n  . k, rather than in the form 
P, W2{ } / P .  k-where P is a typical momentum in the diagram-by analogy with the earlier work on QED. 
The second kind of factorisation would not vanish upon contraction with D"'" or n" and would cause spurious 
covariant kinematic singularities, spurious because they would be an artifact of the factorisation and not 
connected with dynamical particle propagation poles. 

ff ( w2, P o ) .  
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achieved by writing, for the first term and the right-hand side of (21), 

? [ a ( ,  qO+rO)+a(,  q o ) + a ( ,  rol l  1 

-- -l's[3a(,po)+3a(,q0)+3a(,r0)+3a(,ko) 

+ 2 a ( , p O + q o ) + 2 a ( , p o + r 0 ) + 2 a ( ,  r0+q0)1 

+ k K ( n K / k .  n ) & ~ ( ,  40) + 3 a ( ,  T O )  - 3 a ( ,  P O )  - 3 a ( ,  ko) 

+ 4 a ( , p o + k 0 ) - 2 a ( , q o + k 0 ) - 2 a ! ( ,  ro+ko)l 

and factorising the last partt as indicated (similarly for the other terms on the right of 

In the second model one may carry out the analogous steps except that the spectral 
function is p and the kinematic factor is 93 of (16'). When all the steps are dutifully 
followed, one obtains the sum total, 

(18)). 

( ~ ( k ) h ( p ) ~ ( q ) ~ ( r ) r ) z f i " : ' , ( k ,  P ,  4, r )  

(24) 

1 +two cyclic perms of ph'b, qp'c,  rv'd 

+(identical expression with a + p, d + 93). 

In (24) C and A are the bare vertices (14) and (19) of Yang-Mills theory, and the 
average+ spectral function is 

c(w', k p q r ) = & [ 3 a ( ~ ~ , p .  n ) + 3 a ( ~ ' , q . n ) + 3 a ( ~ ~ , r .  n ) + 3 a ( w 2 ,  k . n )  

+ 2 a (  w', p .  n + q .  n )  + 2a( w', q . n + r .  n )  + 2 a  ( w2, r .  n + p  . n ) ] .  
(25) 

The full Bose symmetry of the answer is readily verified by inspection. We emphasise 
once again that the Green function (24) is the only one which matters so far as solving 
the Dyson-Schwinger equations is concerned, and that it is linear i n  the spectral 
function. This eases considerably the task of finding gauge technique solutions for the 
propagator, the subject of a separate investigation. It is not true that the amputated 
Green function I? has as simple a structure as (24); on the contrary, there are numerous 
n-dependent terms of the type exhibited in (6) and (23), so the reader should be warned 
of the dangers in deleting the factors d/(p2- W2) and B/(p2-  W 2 )  from (24) as a 
method of deducing I?-it is plainly wrong. 

t As k -+ 0 in the last bracket, we meet the non-zero expression [a ( , qo) + a (  , ro) + a (  , p o )  - 3 a (  , k O ) ]  which 
multiplies 

f a b e f c d e ~ A w v ( ,  q, r ) + f a S e f d b e i l w v A ( ,  r, p ) + f a d e f b c e ~ , * , ( ,  p ,  q ) + k .  A D A  terms. 

This last combination of terms does vanish as k + 0, as one can explicitly see from (18), and the factorisation is 
therefore analogous to the final part of ( 2 3 ) .  
$ The factors in front of the spectral functions in (7), (11) and ( 2 5 )  can be ascertained by drawing all the pole 
contributions to the Green function and attaching unit weight to each charged line arriving at every vertex and 
summing over all distinct channels. 
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To summarise, we have solved the four-point gauge identities (4) and (13) for 
electrodynamics and chromodynamics, in terms of the complete propagators (l), (8) 
and (20) for the axial gauge. Our method generalises easily to higher-point Green 
functions, and we have only resisted the temptation of quoting the answers because of 
the complex and lengthy character of the expressions, although they are well under- 
stood in principle. They are anyway not needed in first gauge approximation. 
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